# RP1D



## 1-phase PCB mount DC switching solid state relays



## Main features

- DC Solid State Relay for PCB mounting
- Rated operational current: up to 8 ADC
- Rated operational voltage: up to 350 VDC
- Surface mount technology
- · Flexible encapsulation for extended life
- · Control voltage: 4.25 to 32 VDC
- Isolation (Input to Output): 4000 VACrms

## Description

The DC switching relay for PCB mounting is used in applications where there is a need for fast switching of small DC loads with a high input/output insulation of more than 4000 VACrms.

The DC switching relay always switches on and off in accordance with the applied control voltage.

Specifications are at a surrounding temperature of 25°C unless otherwise specified.

# Applications

These relays can be used to switch heaters, motors, valves or solenoids

## Main functions

- DC switching
- Ratings up to 8 ADC / 60 VDC, 1 ADC / 350 VDC
- DC control voltage



## Order code

| -0   |      |   |   |
|------|------|---|---|
|      |      |   |   |
| 7    | DD1D | ח |   |
| L -/ | REID | ע | _ |

Enter the code option instead of . Refer to the Selection guide section for valid part numbers.

| Code | Option | Description                               | Comments    |
|------|--------|-------------------------------------------|-------------|
| R    | -      | Solid State Relay (PCB) with DC switching |             |
| Р    | -      | Solid State Relay (PCB) with DC switching |             |
| 1    | -      | Number of poles                           |             |
| D    | -      | Switching mode: DC switching              |             |
|      | 060    | Rated voltage: 60 VDC                     |             |
|      | 350    | Rated voltage: 350 VDC                    |             |
| D    | -      | Control voltage: 4.25-32 VDC              |             |
|      | 1      | Rated current: 1 ADC                      |             |
|      | 4      | Rated current: 4 ADC                      |             |
|      | 8      | Rated current: 8 ADC                      |             |
|      | Mx     | M1 = Mounting on DIN EN adaptor RPM1      | Up to 250 V |
|      | IVIX   | M2 = Mounting on DIN EN adaptor RPM2      | Up to 600 V |

## Selection guide

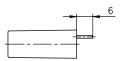
| Max. rated | Control       | Rated operational current @ 40°C |           |           |
|------------|---------------|----------------------------------|-----------|-----------|
| voltage    | voltage       | ge 1 ADC                         | 4 ADC     | 8 ADC     |
| 60 VDC     | 4.25 - 32 VDC | -                                | RP1D060D4 | RP1D060D8 |
| 350 VDC    |               | RP1D350D1                        | -         | -         |

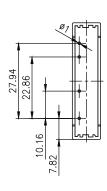
## Selection guide: mounted on DIN EN adaptor

| Max. rated      | Control       | Rated operational current @ 40°C |             |             |
|-----------------|---------------|----------------------------------|-------------|-------------|
| voltage voltage |               | 1 ADC                            | 4 ADC       | 8 ADC       |
| 60 VDC          | 6.25 - 34 VDC | -                                | RP1D060D4M1 | RP1D060D8M1 |
| 350 VDC         | 0.25 - 34 VDC | RP1D350D1M2                      | -           | -           |

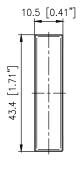
# Carlo Gavazzi compatible components

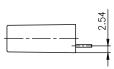
| Description       | Component code                  | Notes                                                 |
|-------------------|---------------------------------|-------------------------------------------------------|
| DIN rail adaptors | RPM1 DIN adaptor 250 V with LED |                                                       |
|                   | RPM1P                           | DIN adaptor 250 V with pins for removal of RP         |
|                   | RPM1PD                          | DIN adaptor 250 V with pins for removal of RP and LED |
|                   | RPM2                            | DIN adaptor 600 V                                     |





# **Features**

# General data


| Material         | PBT, RAL7035                           |  |
|------------------|----------------------------------------|--|
| Potting compound | ame-retardant flexible silicone rubber |  |
| Weight           | Approx. 20 g                           |  |
| Isolation        | Input to output: 4000 VACrms           |  |


## Dimensions











Dimensions in mm unless otherwise noted. Tolerances +/- 0.5 mm.



# **Performance**



# Mains supply

|                           | RP1D060    | RP1D350     |
|---------------------------|------------|-------------|
| Operational voltage range | 1 - 60 VDC | 1 - 350 VDC |
| Blocking voltage          | 60 VDC     | 350 VDC     |



# Outputs

|                                           | RP1D350D1               | RP1D060D4               | RP1D060D8               |
|-------------------------------------------|-------------------------|-------------------------|-------------------------|
| Rated operational current<br>@ Ta=40°C    |                         |                         |                         |
| DC1<br>DC5<br>DC13                        | 1 ADC<br>1 ADC<br>1 ADC | 4 ADC<br>4 ADC<br>4 ADC | 8 ADC<br>8 ADC<br>8 ADC |
| Min. operational load current             | 1 mADC                  |                         |                         |
| Rep. overload current t=1 s               | 20 ADC                  | 15 ADC                  | 60 ADC                  |
| Off-state leakage current @ rated voltage | < 0.01 mADC             |                         |                         |
| On-state voltage drop @ rated current     | < 0.5 VDC               | < 0.5 VDC               | < 1.0 VDC               |



# ► Inputs

| Control voltage range (Uc)                                | 4.25 - 32 VDC |
|-----------------------------------------------------------|---------------|
| Pick-up voltage                                           | 3.3 VDC       |
| Drop-out voltage                                          | 1 VDC         |
| Reverse voltage                                           | 32 VDC        |
| Switching frequency                                       | < 100 Hz      |
| Response time pick-up<br>@ V <sub>in</sub> ≥ 5 VDC        | < 100 µs      |
| Response time drop-out<br>@ V <sub>in</sub> ≤ 24 VDC max. | < 250 µs      |
| Input current                                             | 15 mA         |

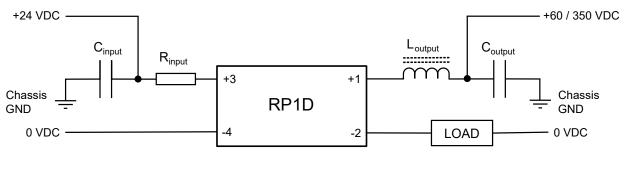


# Current derating curve





# Compatibility and conformance


| Approvals            |                                                                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Standards compliance | LVD: EN 60947-1<br>EMCD: EN 60947-1<br>EE: EN 60947-1<br>EMC: EN 60947-1<br>cURus: UL508 Recognized, C22.2 No. 14 (E80573), NRNT2, NRNT8 |

| Electromagnetic compatibility (E        | Electromagnetic compatibility (EMC) - Immunity                                                                                          |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Electrostatic discharge (ESD)           | EN/IEC 61000-4-2<br>8 kV air discharge, 4 kV contact (PC1)                                                                              |  |  |
| Radiated radio frequency                | EN/IEC 61000-4-3<br>10 V/m, from 80 MHz to 2700 MHz (PC1) <sup>2</sup>                                                                  |  |  |
| Electrical fast transient (burst)       | EN/IEC 61000-4-4<br>Output: 2 kV, 5 kHz (PC2)<br>Input: 1 kV, 5 kHz (PC2)                                                               |  |  |
| Conducted radio frequency               | EN/IEC 61000-4-6<br>10 V/m, from 0.15 to 80 MHz (PC1) <sup>2</sup>                                                                      |  |  |
| Electrical surge                        | EN/IEC 61000-4-5<br>Line to earth: 500 V (PC2)<br>Line to line: 500 V (PC2)                                                             |  |  |
| Voltage dips, interrupts and variations | EN 61000-4-29<br>0, 30, 40, 60, 70, 80, 120%<br>1, 3, 10, 30, 100, 300, 1000 ms (PC2)                                                   |  |  |
| Voltage interruptions                   | EN/IEC 61000-4-11 0% for 10 ms (PC2) 0% for 20 ms (PC2) 0% for 40 ms (PC2) 0% for 100 ms (PC2) 0% for 200 ms (PC2) 0% for 5000 ms (PC2) |  |  |

| Electromagnetic compatibility (EMC) - Emissions  |                                           |
|--------------------------------------------------|-------------------------------------------|
| Radio interference field emission (radiated)     | EN 55011<br>Class A¹: from 30 to 1000 MHz |
| Radio interference voltage emissions (conducted) | EN 55011<br>Class A¹: from 0.15 to 30 MHz |



### Filter connection diagram



$$C_{input}$$
 = 1 nF 2 kV (Y2 class, ceramic disc)  
 $R_{input}$  = 10  $\Omega$  (0.25 W)

Output: the combinational use of  $L_{\text{output}}$  and/or  $C_{\text{output}}$  depends on the level on EM noise reduction required in the end use.

Input: the combinational use of  $L_{input}$  and/or  $C_{input}$  depends on the level on EM noise reduction required in the end use.

#### Note:

1. A filter is required to meet the Class A limits of EN55011: A filter (capacitor or snubber) could be necessary from 60 / 350 VDC supply to chassis Ground. A filter (capacitor or snubber) could be necessary from 24 VDC input to chassis Ground. Refer to the section 'Filter connection diagram' for further details.

Attention: This product has been designed for class A equipment. Use of the product in domestic environments may cause radio interference, in which case the user may be required to employ additional mitigation methods.

- 2. It is recommended that the control input lines are installed together (i.e. a 2 core cable) to ensure acceptable susceptability to RF (Radio Frequency) is maintained. The manufacturer has set a maximum allowable deviation when under RF exposure of <1% FSD.
- Performance Criteria 1 (PC1): No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2 (PC2): During the test, degradation of performance or partial loss of function is allowed. However when the test is complete the product should return operating as intended by itself.
- Performance Criteria 3 (PC3): Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.



# **>**

### Environmental specifications

| Operating temperature | -20° to +80°C (-4° to +176°F)   |  |
|-----------------------|---------------------------------|--|
| Storage temperature   | -40° to +100°C (-40° to +212°F) |  |
| Pollution degree      | 2                               |  |
| EU RoHS compliant     | Yes                             |  |
| China RoHS            | 25                              |  |

The declaration in this section is prepared in compliance with People's Republic of China Electronic Industry Standard SJ/T11364-2014: Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products.

|                        | Toxic or Harardous Substances and Elements |                 |                 |                                    |                                        |                                               |
|------------------------|--------------------------------------------|-----------------|-----------------|------------------------------------|----------------------------------------|-----------------------------------------------|
| Part Name              | Lead<br>(Pb)                               | Mercury<br>(Hg) | Cadmium<br>(Cd) | Hexavalent<br>Chromium<br>(Cr(VI)) | Polybrominat-<br>ed biphenyls<br>(PBB) | Polybromi-<br>nated diphenyl<br>ethers (PBDE) |
| Power Unit<br>Assembly | х                                          | 0               | 0               | 0                                  | 0                                      | 0                                             |

O: Indicates that said hazardous substance contained in homogeneous materials fot this part are below the limit requirement of GB/T 26572.

X: Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质

|      | 有毒或有害物质与元素 |           |           |                 |                |                 |
|------|------------|-----------|-----------|-----------------|----------------|-----------------|
| 零件名称 | 铅<br>(Pb)  | 汞<br>(Hg) | 镉<br>(Cd) | 六价铬<br>(Cr(Vl)) | 多溴化联苯<br>(PBB) | 多溴联苯醚<br>(PBDE) |
| 功率单元 | Х          | 0         | 0         | 0               | 0              | 0               |

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。



## Functional diagram

Supply Oscillator Control Input DC DC Load output

## **Connection specifications**

| Terminals                      | Copper alloy, tin-plated |
|--------------------------------|--------------------------|
| Terminal soldering temperature | Max. 300°C for 5 seconds |



COPYRIGHT ©2023

Content subject to change.
Download the PDF: https://gavazziautomation.com